Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Portugal, Andrés 
dc.contributor.authorCuesta Segura, Isidoro Iván 
dc.contributor.authorAlegre Calderón, Jesús Manuel 
dc.date.accessioned2023-01-24T13:22:49Z
dc.date.available2023-01-24T13:22:49Z
dc.date.issued2021-10
dc.identifier.issn2452-3216
dc.identifier.urihttp://hdl.handle.net/10259/7311
dc.descriptionArtículo publicado en el V. 34 dedicado a: The second European Conference on the Structural Integrity of Additively Manufactured Materialses
dc.description.abstractTitanium alloys are widely employed in aerospace and automotive industries where lightweight applications are required. Additive Manufacturing (AM) processes have been proposed in order to reduce material waste and optimise mechanical properties. In addition, throughout these manufacturing processes and during service life, hydrogen uptake is expected, and the corresponding modification of mechanical properties needs to be modelled. Hydrogenation process including diffusion, trapping and hydride formation in a Ti-6Al-4V alloy during cold dwell fatigue loading, a common failure mode of titanium alloys, is simulated here. All governing equations are implemented in ABAQUS user subroutines. A boundary layer approach is used to simulate how hydrogen redistribution affects hydride kinetics near a blunting crack tip, in which cyclic loading is implemented considering different dwell times. The influence of AM techniques, especially Selective Laser Melting, is expected to promote the increase in martensite phase and microstructure defects due to rapid cooling; thus, the influence of martensite volume fraction and of trapping density on hydrogen redistribution near the crack tip is analysed. The possibility to implement hydrogen and hydride-induced dilatation is also presented, as well as a hydrogen-dependent localised plasticity model. This framework facilitates the prediction of how additive manufacturing processes affect susceptibility to hydrogen embrittlement in Ti-6Al-4V components subjected to dwell fatigue.en
dc.description.sponsorshipThe authors gratefully acknowledge financial support from the Junta of Castile and Leon through grant BU-002- P20, co-financed by FEDER funds.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofProcedia Structural Integrity. 2021, V. 34, p. 229-234en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFinite Element modellingen
dc.subjectHydrogen embrittlementen
dc.subjectHydride formationen
dc.subjectTi-6Al-4Ven
dc.subjectSelective Laser Meltingen
dc.subject.otherIngeniería mecánicaes
dc.subject.otherMechanical engineeringen
dc.subject.otherMaterialeses
dc.subject.otherMaterialsen
dc.titleModelling hydrogenation during cold dwell fatigue of additively manufactured titanium alloysen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.prostr.2021.12.033es
dc.identifier.doi10.1016/j.prostr.2021.12.033
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU-002-P20//Optimización de las técnicas de post-procesado para la mejora de propiedades mecánicas y de fatiga en componentes realizados mediante fabricación aditivaes
dc.journal.titleProcedia Structural Integrityen
dc.volume.number34es
dc.page.initial229es
dc.page.final234es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem