Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7331

    Título
    A Systematic Review of the Use of T-Pattern and T-String Analysis (TPA) With Theme: An Analysis Using Mixed Methods and Data Mining Techniques
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Alonso Martínez, LauraAutoridad UBU Orcid
    Marticorena Sánchez, RaúlAutoridad UBU Orcid
    Publicado en
    Frontiers in Psychology. 2022, V. 13, 943907
    Editorial
    Frontiers Media
    Fecha de publicación
    2022-07
    DOI
    10.3389/fpsyg.2022.943907
    Resumen
    In recent years, research interest in human and non-human behavioral analysis has increased significantly. One key element in the resulting studies is the use of software that facilitates comparative analysis of behavioral patterns, such as using T-Pattern and T-String analysis -TPA- with THEME. Furthermore, all these studies use mixed methods research. Results from these studies have indicated a certain amount of similarity between the biological, temporal, and spatial patterns of human social interactions and the interactions between the contents of their constituent cells. TPA has become an important, widely-used technique in applied behavioral science research. The objectives of the current review were: (1) To identify the results of research over the last 4 years related to the concepts of T-Pattern, TPA, and THEME, since it is in this period in which more publications on these topics have been detected (2) To examine the key concepts and areas in the selected articles with respect to those concepts, applying data and text mining techniques. The results indicate that, over the last 4 years, 20% of the studies were laboratory focused with non-humans, 18% were in sports environments, 9% were in psychological therapy environments and 9% were in natural human contexts. There were also indications that TPA is beginning to be used in workplace environments, which is a very promising setting for future research in this area.
    Palabras clave
    Behavioral structure
    Similarity
    Systematic review
    THEME
    T-Pattern
    T-String
    T-System
    Materia
    Informática
    Computer science
    Psicología
    Psychology
    URI
    http://hdl.handle.net/10259/7331
    Versión del editor
    https://doi.org/10.3389/fpsyg.2022.943907
    Aparece en las colecciones
    • Artículos TFS
    • Artículos DATAHES
    • Artículos ADMIRABLE
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Saiz-fp_2022.pdf
    Tamaño:
    3.614Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem