Mostrar el registro sencillo del ítem

dc.contributor.authorRostan, Julen
dc.contributor.authorIncardona, Nicolo
dc.contributor.authorSánchez-Ortiga, Emilio
dc.contributor.authorMartínez-Corral, Manuel
dc.contributor.authorLatorre Carmona, Pedro 
dc.date.accessioned2023-01-26T13:35:57Z
dc.date.available2023-01-26T13:35:57Z
dc.date.issued2022-05
dc.identifier.urihttp://hdl.handle.net/10259/7338
dc.description.abstractCurrent interest in Fourier lightfield microscopy is increasing, due to its ability to acquire 3D images of thick dynamic samples. This technique is based on simultaneously capturing, in a single shot, and with a monocular setup, a number of orthographic perspective views of 3D microscopic samples. An essential feature of Fourier lightfield microscopy is that the number of acquired views is low, due to the trade-off relationship existing between the number of views and their corresponding lateral resolution. Therefore, it is important to have a tool for the generation of a high number of synthesized view images, without compromising their lateral resolution. In this context we investigate here the use of a neural radiance field view synthesis method, originally developed for its use with macroscopic scenes acquired with a moving (or an array of static) digital camera(s), for its application to the images acquired with a Fourier lightfield microscope. The results obtained and presented in this paper are analyzed in terms of lateral resolution and of continuous and realistic parallax. We show that, in terms of these requirements, the proposed technique works efficiently in the case of the epi-illumination microscopy mode.en
dc.description.sponsorshipThis research was funded by Grant RTI2018-099041-B-I00, which is co-founded by the Ministerio de Ciencia, Innovacion y Universidades (Spain), by the European Regional Development Fund, and by Generalitat Valenciana (Spain) under Grant PROMETEO/2019/048.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofSensors. 2022, V. 22, n. 9, 3487es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFourier lightfield microscopyen
dc.subjectView synthesisen
dc.subjectNeural radiance fieldsen
dc.subject3D microscopyen
dc.subject.otherInformáticaes
dc.subject.otherComputer scienceen
dc.titleMachine Learning-Based View Synthesis in Fourier Lightfield Microscopyen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.3390/s22093487es
dc.identifier.doi10.3390/s22093487
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099041-B-I00/ES/MICROSCOPIO MULTIMODAL PARA LA OBTENCION DE IMAGENES BIOMEDICAS 3D/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F048/es
dc.identifier.essn1424-8220
dc.journal.titleSensorsen
dc.volume.number22es
dc.issue.number9es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem