Mostrar el registro sencillo del ítem

dc.contributor.authorDiez Pastor, José Francisco 
dc.contributor.authorLatorre Carmona, Pedro 
dc.contributor.authorArnaiz González, Álvar 
dc.contributor.authorRuiz Pérez, Javier
dc.contributor.authorZurro, Débora
dc.date.accessioned2023-02-06T07:40:24Z
dc.date.available2023-02-06T07:40:24Z
dc.date.issued2020-11
dc.identifier.issn1431-9276
dc.identifier.urihttp://hdl.handle.net/10259/7378
dc.description.abstractPhytoliths can be an important source of information related to environmental and climatic change, as well as to ancient plant use by humans, particularly within the disciplines of paleoecology and archaeology. Currently, phytolith identification and categorization is performed manually by researchers, a time-consuming task liable to misclassifications. The automated classification of phytoliths would allow the standardization of identification processes, avoiding possible biases related to the classification capability of researchers. This paper presents a comparative analysis of six classification methods, using digitized microscopic images to examine the efficacy of different quantitative approaches for characterizing phytoliths. A comprehensive experiment performed on images of 429 phytoliths demonstrated that the automatic phytolith classification is a promising area of research that will help researchers to invest time more efficiently and improve their recognition accuracy rate.en
dc.description.sponsorshipThis work was supported by the project TIN2015- 67534-P (MINECO/FEDER, UE) of the Ministerio de Economía y Competitividad of the Spanish Government, by the project BU085P17 (JCyL/FEDER, UE) of the Junta de Castilla y León (both projects co-financed through European Union FEDER funds) and by Grups de Recerca de Qualitat CaSEs – Culture and Socio-Ecological Dynamics (2017 SGR 212), AGAUR-Generalitat de Catalunya. The authors gratefully acknowledge the support of NVIDIA Corporation and its donation of the TITAN Xp GPUs used in this research.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherCambridge University Pressen
dc.relation.ispartofMicroscopy and Microanalysis. 2020, V. 26, n. 6, p. 1158-1167es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFeature extractionen
dc.subjectMachine learningen
dc.subjectMicrofossilsen
dc.subjectMorphometryen
dc.subjectProxyen
dc.subject.otherInformáticaes
dc.subject.otherComputer scienceen
dc.title“You Are Not My Type”: An Evaluation of Classification Methods for Automatic Phytolith Identificationen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1017/S1431927620024629es
dc.identifier.doi10.1017/S1431927620024629
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-67534-P/ES/ALGORITMOS DE ENSEMBLES PARA PROBLEMAS DE SALIDAS MULTIPLES. NUEVOS DESARROLLOS Y APLICACIONES/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU085P17//Minería de datos para le mejora del mantenimiento y disponibilidad de máquinas de altas presiones/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/AGAUR//2017 SGR 212/es
dc.identifier.essn1435-8115
dc.journal.titleMicroscopy and Microanalysisen
dc.volume.number26es
dc.issue.number6es
dc.page.initial1158es
dc.page.final1167es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem