Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Quismondo, Enrique
dc.contributor.authorAlvarez-Conde, Sandra
dc.contributor.authorGarcía, Guzmán
dc.contributor.authorMedina-Santos, Jesús I.
dc.contributor.authorPalma, Jesús
dc.contributor.authorVentosa Arbaizar, Edgar 
dc.date.accessioned2023-02-07T09:18:02Z
dc.date.available2023-02-07T09:18:02Z
dc.date.issued2022-09
dc.identifier.issn1944-8244
dc.identifier.urihttp://hdl.handle.net/10259/7406
dc.description.abstractThe formation of a protecting nanolayer, so-called solid electrolyte interphase (SEI), on the negative electrode of Li-ion batteries (LIBs) from product precipitation of the cathodic decomposition of the electrolyte is a blessing since the electrically insulating nature of this nanolayer protects the electrode surface, preventing continuous electrolyte decomposition and enabling the large nominal cell voltage of LIBs, e.g., 3.3−3.8 V. Thus, the protection performance of the nanolayer SEI is essential for LIBs to achieve a long cycle life. Unfortunately, the evaluation of this critical property of the SEI is not trivial. Herein, a new, cheap, and easily implementable methodology, the redox-mediated enhanced coulometry, is presented to estimate the protecting quality of the SEI. The key element of the methodology is the addition of a redox mediator in the electrolyte during the degassing step (after the SEI formation cycle). The redox mediator leads to an internal self-discharge process that is inversely proportional to the protecting character of the SEI. Also, the self-discharge process results in an easily measurable decrease in Coulombic efficiency. The influence of vinylene carbonate as an electrolyte additive in the resulting SEI is used as a case study to showcase the potential of the proposed methodology.en
dc.description.sponsorshipThe author acknowledges the financial support from the Spanish Government (MINECO) through the Research Challenges Programme (Grant RTI2018-099228-A-I00) and Ramón y Cajal award (RYC2018-026086-I) as well as the NanoBat project. NanoBat has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement no. 861962.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofACS Applied Materials & Interfaces. 2022, V. 14, n. 38, p. 43319-43327es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCycle lifeen
dc.subjectSolid electrolyte interphase (SEI)en
dc.subjectProtecting characteren
dc.subjectCoulometry methoden
dc.subjectRedox mediatoren
dc.subject.otherQuímica analíticaes
dc.subject.otherChemistry, Analyticen
dc.titleNew Technique for Probing the Protecting Character of the Solid Electrolyte Interphase as a Critical but Elusive Property for Pursuing Long Cycle Life Lithium-Ion Batteriesen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1021/acsami.2c11992es
dc.identifier.doi10.1021/acsami.2c11992
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099228-A-I00/ES/BATERIAS INJECTABLES DE ELECTRODES SEMI-SOLIDOS/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-026086-I/ES/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/861962/EU/GHz nanoscale electrical and dielectric measurements of the solid-electrolyte interface and applications in the battery manufacturing line/NanoBat/en
dc.identifier.essn1944-8252
dc.journal.titleACS Applied Materials & Interfacesen
dc.volume.number14es
dc.issue.number38es
dc.page.initial43319es
dc.page.final43327es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem