Mostrar el registro sencillo del ítem

dc.contributor.authorValencia García, Olga 
dc.contributor.authorOrtiz Fernández, Mª Cruz 
dc.contributor.authorRuiz Miguel, Santiago 
dc.contributor.authorSánchez Pastor, Mª Sagrario 
dc.contributor.authorSarabia Peinador, Luis Antonio 
dc.date.accessioned2023-02-08T11:52:00Z
dc.date.available2023-02-08T11:52:00Z
dc.date.issued2022-08
dc.identifier.issn0169-7439
dc.identifier.urihttp://hdl.handle.net/10259/7425
dc.description.abstractThe paper presents a new methodology within the framework of the so-called compliant class-models, PLS2-CM, designed with the purpose of improving the performance of class-modelling in a setting with more than two classes. The improvement in the class-models is achieved through the use of multi-response PLS models with the classes encoded via Error-Correcting Output Codes (ECOC), instead of the traditional class indicator variables used in chemometrics. The proposed PLS2-CM entails a decomposition of a class-modelling problem into a series of binary learners, based on a family of code matrices with different code length, which are evaluated to obtain simultaneous compliant class-models with the best performance. The methodology develops both a new encoding system, based on multi-criteria optimization to search for optimal coding matrices, and a new decoding system, based on probability thresholds to assign objects to classmodels. The whole procedure implies that the characteristics of the dataset at hand affect the final selection of the coding matrix and therefore of built class-models, thus giving rise to a data-driven strategy. The application of PLS2-CM to a variety of cases (controlled data, experimental data and repository datasets) results in an enhanced class-modelling performance by means of the suggested procedure, as measured by the DMCEN (Diagonal Modified Confusion Entropy) index and by sensitivity-specificity matrices. The predictive ability of the compliant class-models has been evaluated.en
dc.description.sponsorshipThis work is part of the project with reference BU052P20 financed by Junta de Castilla y Leon, Conserjería de Educacion with the aid of European Regional Development Funds.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieren
dc.relation.ispartofChemometrics and Intelligent Laboratory Systems. 2022, V. 227, 104614en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCompliant class-modelsen
dc.subjectError-correcting output code (ECOC)en
dc.subjectPartial least squares multi-response regression (PLS2)en
dc.subjectSensitivityen
dc.subjectSpecificityen
dc.subjectDiagonal modified confusion entropy (DMCEN)en
dc.subject.otherQuímicaes
dc.subject.otherChemistryen
dc.subject.otherMatemáticases
dc.subject.otherMathematicsen
dc.titleSimultaneous class-modelling in chemometrics: A generalization of Partial Least Squares class modelling for more than two classes by using error correcting output code matricesen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.chemolab.2022.104614es
dc.identifier.doi10.1016/j.chemolab.2022.104614
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU052P20//Nuevos desarrollos metodológicos del diseño de experimentos para análisis químicos, bioquímicos y en tecnología analítica de procesos/es
dc.journal.titleChemometrics and Intelligent Laboratory Systemsen
dc.volume.number227es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem