Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Portugal, Andrés 
dc.contributor.authorAlegre Calderón, Jesús Manuel 
dc.contributor.authorCuesta Segura, Isidoro Iván 
dc.contributor.authorMartínez Pañeda, Emilio
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2023-03-08T09:13:18Z
dc.date.available2023-03-08T09:13:18Z
dc.date.issued2022-10
dc.identifier.issn0167-8442
dc.identifier.urihttp://hdl.handle.net/10259/7511
dc.description.abstractTi-6Al-4V is a titanium alloy with excellent properties for lightweight applications and its production through Additive Manufacturing processes is attractive for different industrial sectors. In this work, the influence of mechanical properties on the notch fracture resistance of Ti-6Al-4V produced by Selective Laser Melting is numerically investigated. Literature data is used to inform material behaviour. The as-built brittle behaviour is compared to the enhanced ductile response after heat treatment (HT) and hot isostatic pressing (HIP) post-processes. A Phase Field framework is adopted to capture damage nucleation and propagation from two different notch geometries and a discussion on the influence of fracture energy and the characteristic length is carried out. In addition, the influence of oxygen uptake is analysed by reproducing non-inert atmospheres during HT and HIP, showing that oxygen shifts fracture to brittle failures due to the formation of an alpha case layer, especially for the V-notch geometry. Results show that a pure elastic behaviour can be assumed for the as-built SLM condition, whereas elastic-plastic phenomena must be modelled for specimens subjected to heat treatment or hot isostatic pressing. The present brittle Phase Field framework coupled with an elastic-plastic constitutive analysis is demonstrated to be a robust prediction tool for notch fracture after different post-processing routes.en
dc.description.sponsorshipFinancial support from the Junta of Castile and Leon through grant BU-002-P20, co-financed by FEDER funds. E. Martínez-Pañeda was supported by an UKRI Future Leaders Fellowship (grant MR/V024124/1). A. Díaz wishes to thank the Nanomechanical Lab of NTNU for providing hospitality during his research stay.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofTheoretical and Applied Fracture Mechanics. 2022, V. 121, 103510en
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNotch fractureen
dc.subjectFinite element modellingen
dc.subjectPhase Fielden
dc.subjectAdditive manufacturingen
dc.subjectTi-6Al-4Ven
dc.subject.otherResistencia de materialeses
dc.subject.otherStrength of materialsen
dc.subject.otherIngeniería mecánicaes
dc.subject.otherMechanical engineeringen
dc.titleNotch fracture predictions using the Phase Field method for Ti-6Al-4V produced by Selective Laser Melting after different post-processing conditionsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.tafmec.2022.103510es
dc.identifier.doi10.1016/j.tafmec.2022.103510
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Castilla y León//BU-002-P20//Optimización de las técnicas de post-procesado para la mejora de propiedades mecánicas y de fatiga en componentes realizados mediante fabricación aditiva/es
dc.relation.projectIDinfo:eu-repo/grantAgreement/UKRI//MR%2FV024124%2F1/GB/en
dc.journal.titleTheoretical and Applied Fracture Mechanicsen
dc.volume.number121es
dc.page.initial103510es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem