dc.contributor.author | Ramírez Sanz, José Miguel | |
dc.contributor.author | Garrido Labrador, José Luis | |
dc.contributor.author | Olivares Gil, Alicia | |
dc.contributor.author | García Bustillo, Álvaro | |
dc.contributor.author | Arnaiz González, Álvar | |
dc.contributor.author | Diez Pastor, José Francisco | |
dc.contributor.author | Jahouh, Maha | |
dc.contributor.author | González Santos, Josefa | |
dc.contributor.author | González Bernal, Jerónimo | |
dc.contributor.author | Allende-Río, Marta | |
dc.contributor.author | Valiñas Sieiro, Florita | |
dc.contributor.author | Trejo Gabriel y Galán, José Mª | |
dc.contributor.author | Cubo Delgado, Esther | |
dc.date.accessioned | 2023-03-13T12:15:33Z | |
dc.date.available | 2023-03-13T12:15:33Z | |
dc.date.issued | 2023-02 | |
dc.identifier.uri | http://hdl.handle.net/10259/7536 | |
dc.description.abstract | The consolidation of telerehabilitation for the treatment of many diseases over the last
decades is a consequence of its cost-effective results and its ability to offer access to rehabilitation in
remote areas. Telerehabilitation operates over a distance, so vulnerable patients are never exposed to
unnecessary risks. Despite its low cost, the need for a professional to assess therapeutic exercises
and proper corporal movements online should also be mentioned. The focus of this paper is on
a telerehabilitation system for patients suffering from Parkinson’s disease in remote villages and
other less accessible locations. A full-stack is presented using big data frameworks that facilitate
communication between the patient and the occupational therapist, the recording of each session,
and real-time skeleton identification using artificial intelligence techniques. Big data technologies are
used to process the numerous videos that are generated during the course of treating simultaneous
patients. Moreover, the skeleton of each patient can be estimated using deep neural networks for
automated evaluation of corporal exercises, which is of immense help to the therapists in charge of
the treatment programs. | en |
dc.description.sponsorship | This work was supported by project PI19/00670 of the Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, Spain. The authors gratefully acknowledge the support of the NVIDIA Corporation and its donation of the TITAN Xp GPU used in this research. In addition, this work was partially supported by the European Social Fund, as the authors José Miguel Ramírez-Sanz, José Luis Garrido-Labrador, and Alicia Olivares-Gil are the recipients of a pre-doctoral grant (EDU/875/2021) from the Conserjería de Educación de la Junta de Castilla y León. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | MDPI | en |
dc.relation.ispartof | Healthcare. 2023, V. 11, n. 4, 507 | en |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Parkinson’s disease | en |
dc.subject | Telerehabilitation | en |
dc.subject | Telemedicine | en |
dc.subject | Big data | en |
dc.subject | Artificial intelligence in healthcare | en |
dc.subject.other | Informática | es |
dc.subject.other | Computer science | en |
dc.subject.other | Salud | es |
dc.subject.other | Health | en |
dc.subject.other | Medicina | es |
dc.subject.other | Medicine | en |
dc.subject.other | Neurología | es |
dc.subject.other | Neurology | en |
dc.title | A Low-Cost System Using a Big-Data Deep-Learning Framework for Assessing Physical Telerehabilitation: A Proof-of-Concept | en |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.3390/healthcare11040507 | es |
dc.identifier.doi | 10.3390/healthcare11040507 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (ISCIII)/PI19%2F00670/ES/ESTUDIO DE FACTIBILIDAD Y COSTE-EFECTIVIDAD DEL USO TELEMEDICINA CON UN EQUIPO MULTIDISCIPLINAR PARA PREVENCION DE CAIDAS EN LA ENFERMEDAD DE PARKINSON/ | es |
dc.identifier.essn | 2227-9032 | |
dc.journal.title | Healthcare | en |
dc.volume.number | 11 | es |
dc.issue.number | 4 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |