Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7541

    Título
    An experiment on animal re-identification from video
    Autor
    Kuncheva, Ludmila I. .
    Garrido Labrador, José LuisAutoridad UBU Orcid
    Ramos Pérez, IsmaelAutoridad UBU Orcid
    Hennessey, Samuel L.
    Rodríguez Diez, Juan JoséAutoridad UBU Orcid
    Publicado en
    Ecological Informatics. 2023, V. 74, 101994
    Editorial
    Elsevier
    Fecha de publicación
    2023-05
    ISSN
    1574-9541
    DOI
    10.1016/j.ecoinf.2023.101994
    Resumen
    In the face of the global concern about climate change and endangered ecosystems, monitoring individual animals is of paramount importance. Computer vision methods for animal recognition and re-identification from video or image collections are a modern alternative to more traditional but intrusive methods such as tagging or branding. While there are many studies reporting results on various animal re-identification databases, there is a notable lack of comparative studies between different classification methods. In this paper we offer a comparison of 25 classification methods including linear, non-linear and ensemble models, as well as deep learning networks. Since the animal databases are vastly different in characteristics and difficulty, we propose an experimental protocol that can be applied to a chosen data collections. We use a publicly available database of five video clips, each containing multiple identities (9 to 27), where the animals are typically present as a group in each video frame. Our experiment involves five data representations: colour, shape, texture, and two feature spaces extracted by deep learning. In our experiments, simpler models (linear classifiers) and just colour feature space gave the best classification accuracy, demonstrating the importance of running a comparative study before resorting to complex, time-consuming, and potentially less robust methods.
    Palabras clave
    Animal re-identification
    Computer vision
    Classification
    Convolutional networks
    Comparative study
    Materia
    Informática
    Computer science
    Biología
    Biology
    URI
    http://hdl.handle.net/10259/7541
    Versión del editor
    https://doi.org/10.1016/j.ecoinf.2023.101994
    Aparece en las colecciones
    • Artículos ADMIRABLE
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Kuncheva-ei_2023.pdf
    Tamaño:
    3.537Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem