Afficher la notice abrégée

dc.contributor.authorCano, Begoña
dc.contributor.authorReguera López, Nuria 
dc.date.accessioned2023-11-09T10:25:56Z
dc.date.available2023-11-09T10:25:56Z
dc.date.issued2021-04
dc.identifier.urihttp://hdl.handle.net/10259/7968
dc.description.abstractIn previous papers, a technique has been suggested to avoid order reduction when integrating initial boundary value problems with several kinds of exponential methods. The technique implies in principle to calculate additional terms at each step from those already necessary without avoiding order reduction. The aim of the present paper is to explain the surprising result that, many times, in spite of having to calculate more terms at each step, the computational cost of doing it through Krylov methods decreases instead of increases. This is very interesting since, in that way, the methods improve not only in terms of accuracy, but also in terms of computational cost.en
dc.description.sponsorshipThis research was funded by Ministerio de Ciencia e Innovación and Regional Development European Funds through project PGC2018-101443-B-I00 and by Junta de Castilla y León and Feder through project VA169P20.en
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofMathematics. 2021, V. 9, n. 9, 1008es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAvoiding order reductionen
dc.subjectEfficiencyen
dc.subjectKrylov methodsen
dc.subject.otherMatemáticases
dc.subject.otherMathematicsen
dc.titleWhy Improving the Accuracy of Exponential Integrators Can Decrease Their Computational Cost?en
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.3390/math9091008es
dc.identifier.doi10.3390/math9091008
dc.identifier.essn2227-7390
dc.journal.titleMathematicsen
dc.volume.number9es
dc.issue.number9es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée