Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8202
Título
The Neuroprotective Lipocalin Apolipoprotein D Stably Interacts with Specific Subtypes of Detergent-Resistant Membrane Domains in a Basigin-Independent Manner
Publicado en
Molecular Neurobiology. 2022, V. 59, n. 7, p. 4015-4029
Editorial
Springer
Fecha de publicación
2022
ISSN
0893-7648
DOI
10.1007/S12035-022-02829-Z
Abstract
Accumulated evidence points to the lipocalin apolipoprotein D (ApoD), one of the few genes consistently upregulated upon brain ageing and neurodegeneration, as an endogenous controller of the redox state of cellular and extracellular lipid structures. This biochemical function has downstream consequences as apparently varied as control of glycocalyx and myelin compaction, cell viability upon oxidative stress or modulation of signalling pathways. In spite of this knowledge, it is still unclear if ApoD function requires canonical receptor-mediated transductions systems. This work aims to examine ApoD-cell membrane interaction and its dependence on a proposed ApoD receptor, Basigin. Whole and fractionated membrane preparations from the brain, primary astrocytes, glial and neuronal cell lines, reveal ApoD as a very specific component of particular subtypes of detergent-resistant microdomains (DRMs). ApoD interacts in vitro with neuronal membranes and is stably associated with astrocytic membranes. ApoD associates with DRMs with specific buoyancy properties that co-fractionate with plasma or late-endosome-lysosome markers. A mass spectrometry analysis reveals that these Triton X-114 DRMs contain both plasma membrane and endosomal-lysosomal compartment lipid raft proteins. ApoD-DRM association is maintained under metabolic and acute oxidative stress conditions. However, ApoD-membrane interaction, its internalization and its lipid-antioxidant function do not require the presence of Basigin. This work supports a stable association of ApoD with membranes, independent of Basigin, and provides the basis to fully understand ApoD antioxidant neuroprotective mechanism as a mechanism taking place in specific membrane subdomains.
Palabras clave
Neuroprotection
Lipid rafts
Plasma membrane
Lysosome
Lipid peroxidation
Endocytosis
Materia
Química
Chemistry
Biología molecular
Molecular biology
Versión del editor
Aparece en las colecciones