Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8252
Título
Incorporating Cellular Stochasticity in Solid–Fluid Mixture Biofilm Models
Publicado en
Entropy. 2020, V. 22, n. 2, 188
Editorial
MDPI
Fecha de publicación
2020
ISSN
1099-4300
DOI
10.3390/E22020188
Resumen
The dynamics of cellular aggregates is driven by the interplay of mechanochemical processes and cellular activity. Although deterministic models may capture mechanical features, local chemical fluctuations trigger random cell responses, which determine the overall evolution. Incorporating stochastic cellular behavior in macroscopic models of biological media is a challenging task. Herein, we propose hybrid models for bacterial biofilm growth, which couple a two phase solid/fluid mixture description of mechanical and chemical fields with a dynamic energy budget-based cellular automata treatment of bacterial activity. Thin film and plate approximations for the relevant interfaces allow us to obtain numerical solutions exhibiting behaviors observed in experiments, such as accelerated spread due to water intake from the environment, wrinkle formation, undulated contour development, and the appearance of inhomogeneous distributions of differentiated bacteria performing varied tasks.
Palabras clave
Biofilm
Cellular activity
Solid–fluid mixture
Thin film
Von Karman plate
Dynamic energy budget
Osmotic spread
Wrinkle formation
Cell differentiation
Materia
Matemáticas
Mathematics
Microbiología
Microbiology
Versión del editor
Aparece en las colecciones