Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Pérez, Marta 
dc.contributor.authorCuscó, Cristina
dc.contributor.authorBenítez García, Cristina
dc.contributor.authorBonelli, Joaquín
dc.contributor.authorNuevo Fonoll, Marina
dc.contributor.authorSoriano, Aroa
dc.contributor.authorMartínez García, David
dc.contributor.authorArias Betancur, Alain
dc.contributor.authorGarcía Valverde, María 
dc.contributor.authorSegura, Miguel F.
dc.contributor.authorQuesada Pato, Roberto 
dc.contributor.authorRocas, Josep
dc.contributor.authorSoto Cerrato, Vanessa
dc.contributor.authorPérez Tomás, Ricardo
dc.date.accessioned2024-01-12T13:54:40Z
dc.date.available2024-01-12T13:54:40Z
dc.date.issued2021
dc.identifier.issn2227-9059
dc.identifier.urihttp://hdl.handle.net/10259/8327
dc.description.abstractCancer is one of the leading causes of mortality worldwide due, in part, to limited success of some current therapeutic approaches. The clinical potential of many promising drugs is restricted by their systemic toxicity and lack of selectivity towards cancer cells, leading to insufficient drug concentration at the tumor site. To overcome these hurdles, we developed a novel drug delivery system based on polyurea/polyurethane nanocapsules (NCs) showing pH-synchronized amphoteric properties that facilitate their accumulation and selectivity into acidic tissues, such as tumor microenvironment. We have demonstrated that the anticancer drug used in this study, a hydrophobic anionophore named T21, increases its cytotoxic activity in acidic conditions when nanoencapsulated, which correlates with a more efficient cellular internalization. A biodistribution assay performed in mice has shown that the NCs are able to reach the tumor and the observed systemic toxicity of the free drug is significantly reduced in vivo when nanoencapsulated. Additionally, T21 antitumor activity is preserved, accompanied by tumor mass reduction compared to control mice. Altogether, this work shows these NCs as a potential drug delivery system able to reach the tumor microenvironment, reducing the undesired systemic toxic effects. Moreover, these nanosystems are prepared under scalable methodologies and straightforward process, and provide tumor selectivity through a smart mechanism independent of targeting ligands.en
dc.description.sponsorshipWe thank CERCA Programme/Generalitat de Catalunya for institutional support. M.P.-H. thanks “La Caixa foundation” for her postdoctoral fellowship. A.A. thanks PFCHA/Becas Chile (Folio #72200156). D.M.G. thanks the Government of Catalonia for his predoctoral fellowship through L’Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR; FI-DRG 2016).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofBiomedicines. 2021, V. 9, n. 5, 508es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPolymer nanocapsulesen
dc.subjectTumor microenvironmenten
dc.subjectPH-tunableen
dc.subjectLung cancer treatmenten
dc.subjectTargeted drug delivery systemsen
dc.subjectAmphoteric nanocapsulesen
dc.subject.otherMedicinaes
dc.subject.otherMedicineen
dc.subject.otherSaludes
dc.subject.otherHealthen
dc.subject.otherQuímica orgánicaes
dc.subject.otherChemistry, Organicen
dc.titleMulti-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drugen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.3390/biomedicines9050508es
dc.identifier.doi10.3390/biomedicines9050508
dc.identifier.essn2227-9059
dc.journal.titleBiomedicineses
dc.volume.number9es
dc.issue.number5es
dc.page.initial508es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem