Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Quimiometría y Cualimetría (Q&C)
    • Artículos Q&C
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Quimiometría y Cualimetría (Q&C)
    • Artículos Q&C
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9285

    Título
    Analytical quality by design using a D-optimal design and parallel factor analysis in an automatic solid phase extraction system coupled to liquid chromatography. Determination of nine PAHs in coffee samples
    Autor
    Valverde Som, LucíaAutoridad UBU Orcid
    Arce Antón, MarAutoridad UBU Orcid
    Sarabia Peinador, Luis AntonioAutoridad UBU Orcid
    Ortiz Fernández, Mª CruzAutoridad UBU Orcid
    Publicado en
    Chemometrics and Intelligent Laboratory Systems. 2023, V. 243, 105008
    Editorial
    Elsevier
    Fecha de publicación
    2023-12-15
    ISSN
    0169-7439
    DOI
    10.1016/j.chemolab.2023.105008
    Resumen
    Optimizing a multi-residue analysis when using an automatic SPE (solid phase extraction) system and complex matrices becomes a difficult problem because of the large number of experimental factors that can influence the recovery of the analytes. Furthermore, in most cases, the conditions of the factors that enhance the response of one analyte are in conflict with those suitable for some others. In this work, AQbD (Analytical Quality by Design) is applied to the development of an analytical procedure based on automatic SPE coupled to HPLC-FLD in the determination of nine polycyclic aromatic hydrocarbons (PAHs) in coffee samples. Focussing on the SPE, the elution volume, the dry time, and volume in the wash stage, and the organic solvent (at two, three, three, and four levels, respectively) were considered. The first problem is to handle these four factors (control method parameters, CMPs) at different levels to optimize responses (critical quality attributes, CQAs). This task has been carried out using a D-optimal design that, starting from a full factorial design of four factors with 72 experiments, reduced this number to 19, maintaining the precision of the estimates, saving time and costs in the laboratory. The second problem is related to the choice of CQAs to apply the AQbD methodology. A complex matrix such as coffee contains impurities that interferes with the target analytes and may even coelute in the chromatographic determination. A PARAFAC decomposition allows avoiding this problem and uses the “second order advantage” to unequivocally identify each analyte. Then, the obtained sample loadings were used as responses. Specifically, each CQA is the difference between spiked and blank coffee samples. All these CQAs must be maximized. Once the experimental data were obtained, two alternatives were posed: on the one hand, the classical optimization based on the estimation of the effects of CMPs on the CQAs, and on the other hand, applying the AQbD methodology to construct the design space that allows to increase the knowledge of the automatic SPE system. Because the experimental domain of CMPs is discrete and the SPE system performs differently for each analyte, it is not possible to obtain the maximum of all CQAs at the same factor levels. Therefore, the design space of the CMPs is obtaining through the Pareto front of the non-dominated values of CQAs. The nine PAHs selected were phenanthrene (PHE), anthracene (ANT), fluoranthene (FLN), pyrene (PYR), chrysene (CHR), benzo[a]anthracene (BaA), perylene (PER), benzo[b]fluoranthene (BbF) and benzo[a]pyrene (BaP). European regulations amending foodstuff set maximum levels for BaP and the sum of the content of four compounds (PAH4): BaP, BaA, BbF and CHR.
    Palabras clave
    Analytical quality by desing
    D-optimal desing
    SPE
    HPLC-FLD
    Polycyclic aromatic hydrocarbon
    Coffee
    Materia
    Química analítica
    Chemistry, Analytic
    Alimentos
    Food
    URI
    http://hdl.handle.net/10259/9285
    Versión del editor
    https://doi.org/10.1016/j.chemolab.2023.105008
    Aparece en las colecciones
    • Artículos Q&C
    Atribución-NoComercial 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución-NoComercial 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Valverde-cils_2023.pdf
    Tamaño:
    2.061Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem