Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9286
Título
The Dunkl oscillator on a space of nonconstant curvature: An exactly solvable quantum model with reflections
Autor
Publicado en
Annals of Physics. 2024, V. 460, 169543
Editorial
Elsevier
Fecha de publicación
2024-01
ISSN
0003-4916
DOI
10.1016/j.aop.2023.169543
Resumen
We introduce the Dunkl–Darboux III oscillator Hamiltonian in N dimensions as a
deformation of the Dunkl oscillator. This deformation is interpreted as the introduction of a non-constant curvature on the underlying space or, equivalently, as a quadratic position-dependent mass for the Dunkl oscillator. This new ND quantum model is shown to be exactly solvable, and its eigenvalues and eigenfunctions are explicitly presented. It is shown that in the 2D case both Darboux III and Dunkl oscillators can be coupled with a constant magnetic field, thus giving rise to two new quantum integrable systems in which the effect of the
deformation and of the Dunkl derivatives on the Landau levels can be studied. Finally, the full 2D Dunkl–Darboux III oscillator is coupled with the magnetic field and shown to define an exactly solvable Hamiltonian, where the interplay between the
deformation and the magnetic field is explicitly illustrated.
Palabras clave
Darboux III oscilator
Dunkl derivative
Curvature
Integrable deformation
Exact solutions
Landau levels
Materia
Física matemática
Mathematical physics
Versión del editor
Aparece en las colecciones
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional