Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Solar and Wind Feasibility Technologies (SWIFT)
    • Artículos SWIFT
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Solar and Wind Feasibility Technologies (SWIFT)
    • Artículos SWIFT
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9304

    Título
    Fault detection in analog electronic circuits using fuzzy inference systems and particle swarm optimization
    Autor
    Dieste Velasco, Mª IsabelAutoridad UBU Orcid
    Publicado en
    Alexandria Engineering Journal. 2024, V. 95, p. 376-393
    Editorial
    Elsevier
    Fecha de publicación
    2024-05
    ISSN
    1110-0168
    DOI
    10.1016/j.aej.2024.01.054
    Resumen
    Fault detection in analog circuits is of great importance to predict the correct operation of the circuit. For this purpose, soft computing techniques such as those based on the application of fuzzy inference systems stand out. However, given the large variability that can exist in analog circuits due to component tolerance, the initial fuzzy inference system (FIS) may not be able to accurately diagnose the different hard faults. This study presents a methodology to diagnose and detect the faults that can occur in analog circuits, which is based on the development of a FIS, starting from a specific fault situation in the analog circuit, and subsequently on the optimization of the membership functions using an evolutionary algorithm so that the adjusted FIS can classify and predict different failure situations. To this end, the application of optimization techniques based on particle swarm optimization (PSO) will be analyzed to develop a FIS capable of predicting different faults. In addition, pattern search algorithm will also be analyzed. A Sallen-Key band-pass filter and a single stage of a small-signal amplifier are used as test circuits. The proposed methodology shows that it is possible to accurately predict the faults that could arise in the circuits under study.
    Palabras clave
    Analog electronic circuits
    Fault diagnosis
    Fault classification
    Fuzzy inference systems (FIS)
    Particle swarm optimization (PSO)
    Pattern search
    Materia
    Electrotecnia
    Electrical engineering
    URI
    http://hdl.handle.net/10259/9304
    Versión del editor
    https://doi.org/10.1016/j.aej.2024.01.054
    Aparece en las colecciones
    • Artículos SWIFT
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Dieste-aej_2024.pdf
    Tamaño:
    21.67Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem