Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints and Research Data
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints and Research Data
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9364

    Título
    Conventional Methods and AI models for Solving an Industrial an Industrial Problem
    Autor
    Bustillo Iglesias, AndrésUBU authority Orcid
    Sedano, Javier
    Ramón Villar, José
    Curiel Herrera, Leticia ElenaUBU authority Orcid
    Corchado, EmilioUBU authority Orcid
    Publicado en
    Second UKSIM European Symposium on Computer Modeling and Simulation, p. 317-322
    Editorial
    Institute of Electrical and Electronics Engineers (IEEE)
    Fecha de publicación
    2008-09-16
    ISBN
    978-0-7695-3325-4
    DOI
    10.1109/EMS.2008.106
    Descripción
    Trabajo presentado en: Second UKSIM European Symposium on Computer Modeling and Simulation - EMS 2008, realizado el 08, 09 y 10 de septiembre de 2008, en Liverpool (Reino Unido)
    Abstract
    This study presents a research that identifies and applies unsupervised connectionist models in conjunction with modelling systems, in order todetermine optimal conditions to perform laser milling of metallic components. This industrial problem is defined by a data set relayed through sensors situated on a laser milling centre that is a machine-tool used to manufacture high value micro-molds and micro-dies. The results of the study and the application of the connectionist architectures allow the identification, in a second phase, of a model for the milling machine process based on low-order models such as Black Box, which are capable of approximating the optimal form of the model. Finally, it is shown that the most appropriate model to control these industrial tasks is the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples.
    Materia
    Informática
    Computer science
    Inteligencia artificial
    Artificial intelligence
    Industria
    Industry
    URI
    http://hdl.handle.net/10259/9364
    Versión del editor
    https://ieeexplore.ieee.org/document/4625293
    Collections
    • Untitled
    Files in this item
    Nombre:
    Bustillo-Conventional_Methods_AI_Solving_2008.pdf
    Tamaño:
    194.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record