Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9364
Título
Conventional Methods and AI models for Solving an Industrial an Industrial Problem
Autor
Publicado en
Second UKSIM European Symposium on Computer Modeling and Simulation, p. 317-322
Editorial
Institute of Electrical and Electronics Engineers (IEEE)
Fecha de publicación
2008-09-16
ISBN
978-0-7695-3325-4
DOI
10.1109/EMS.2008.106
Descripción
Trabajo presentado en: Second UKSIM European Symposium on Computer Modeling and Simulation - EMS 2008, realizado el 08, 09 y 10 de septiembre de 2008, en Liverpool (Reino Unido)
Resumo
This study presents a research that identifies and applies unsupervised connectionist models in conjunction with modelling systems, in order todetermine optimal conditions to perform laser milling of metallic components. This industrial problem is defined by a data set relayed through sensors situated on a laser milling centre that is a machine-tool used to manufacture high value micro-molds and micro-dies. The results of the study and the application of the connectionist architectures allow the identification, in a second phase, of a model for the milling machine process based on low-order models such as Black Box, which are capable of approximating the optimal form of the model. Finally, it is shown that the most appropriate model to control these industrial tasks is the Box-Jenkins algorithm, which calculates the function of a linear system from its input and output samples.
Materia
Informática
Computer science
Inteligencia artificial
Artificial intelligence
Industria
Industry
Versión del editor
Aparece en las colecciones