Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Análisis y Simulación Molecular de Fluidos (AdF)
    • Artículos AdF
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Análisis y Simulación Molecular de Fluidos (AdF)
    • Artículos AdF
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9494

    Título
    hMSCs in contact with DMSO for cryopreservation: Experiments and modeling of osmotic injury and cytotoxic effect
    Autor
    Traversari, Gabriele
    Delogu, Francesco
    Aparicio Martínez, SantiagoAutoridad UBU Orcid
    Cincotti, Alberto
    Publicado en
    Biotechnology and Bioengineering. 2022, V. 119, n. 10, p. 2890-2907
    Editorial
    Wiley
    Fecha de publicación
    2022-07-07
    ISSN
    0006-3592
    DOI
    10.1002/bit.28174
    Resumen
    In this study a combined analysis of osmotic injury and cytotoxic effect useful for the optimization of the cryopreservation process of a cell suspension is carried out. The case of human Mesenchymal Stem Cells (hMSCs) from Umbilical Cord Blood (UCB) in contact with dimethyl sulfoxide (DMSO) acting as Cryo-Protectant Agent (CPA) is investigated from the experimental as well as the theoretical perspective. The experimental runs are conducted by suspending the cells in hypertonic solutions of DMSO at varying osmolality, system temperature, and contact times; then, at room temperature, cells are pelleted by centrifugation and suspended back to isotonic conditions. Eventually, cell count and viability are measured by means of a Coulter counter and flow-cytometer, respectively. Overall, a decrease in cell count and viability results when DMSO concentration, temperature, and contact time increase. A novel mathematical model is developed and proposed to interpret measured data by dividing the cell population between viable and nonviable cells. The decrease of cell count is ascribed exclusively to the osmotic injury caused by expansion lysis: excessive swelling causes the burst of both viable as well as nonviable cells. On the other hand, the reduction of cell viability is ascribed only to cytotoxicity which gradually transforms viable cells into nonviable ones. A chemical reaction engineering approach is adopted to describe the dynamics of both phenomena: by following the kinetics of two chemical reactions during cell osmosis inside a closed system it is shown that the simultaneous reduction of cell count and viability may be successfully interpreted. The use of the Surface Area Regulation (SAR) model recently proposed by the authors allows one to avoid the setting in advance of fixed cell Osmotic Tolerance Limits (OTLs), as traditionally done in cryopreservation literature to circumvent the mathematical simulation of osmotic injury. Comparisons between experimental data and theoretical simulations are provided: first, a nonlinear regression analysis is performed to evaluate unknown model parameters through a best-fitting procedure carried out in a sequential fashion; then, the proposed model is validated by full predictions of system behavior measured at operating conditions different from those used during the best-fit procedure.
    Palabras clave
    Cryopreservation
    Cytotoxicity
    DMSO
    Experiment
    Modeling
    Osmotic injury
    Materia
    Química física
    Chemistry, Physical and theoretical
    URI
    http://hdl.handle.net/10259/9494
    Versión del editor
    https://doi.org/10.1002/bit.28174
    Aparece en las colecciones
    • Artículos AdF
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Traversari-bb_2022.pdf
    Tamaño:
    2.995Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem