Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9712
Título
Machine learning techniques for estimation of BIPV production
Autor
Publicado en
Proceedings 2CNIT 2022, p. 63-68
Fecha de publicación
2022
ISBN
978-84-09-42477-1
Descripción
Comunicación presentada en: XII Congreso Nacional y III Internacional de Ingeniería Termodinámica (12 CNIT), June 19- July 1, Madrid (Spain)
Resumen
This study evaluated the performance of nine ANNs to estimate the electricity production of a BIPV system from meteorological data that are generally accessible from ground-based meteorological stations. Solar irradiance was proved to be the most adequate input variable to predict PV production with a simple ANN. However, the accuracy of this simple model was notably improved with the inclusion of the temperature and relative humidity. Wind speed and direction were less relevant as their statistical indicators highlighted. Indeed, all reviewed ANN structures shown good performance as the ܴܯܵܧ and ܧܤܯ kept relatively low. Besides, the largest number of neurons does not lead to a better performance.
Palabras clave
Machine learning
ANN
BIPV
Renewable Energy
Solar energy
Materia
Termodinámica
Thermodynamics
Energía solar
Solar energy
Aparece en las colecciones