Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Solar and Wind Feasibility Technologies (SWIFT)
    • Ponencias / Comunicaciones de congresos SWIFT
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Solar and Wind Feasibility Technologies (SWIFT)
    • Ponencias / Comunicaciones de congresos SWIFT
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9717

    Título
    Extension of locally adapted models of photosynthetically active radiation for all sky conditions
    Autor
    García Rodríguez, AnaAutoridad UBU Orcid
    García Rodríguez, SolAutoridad UBU Orcid
    Granados López, DiegoAutoridad UBU Orcid
    Garrachón Gómez, Elena
    Diez Mediavilla, MontserratAutoridad UBU Orcid
    Publicado en
    Proceedings 12CNIT 2022, p. 981-986
    Fecha de publicación
    2022
    ISBN
    978-84-09-42477-1
    Descripción
    Comunicación presentada en: XII Congreso Nacional y III Internacional de Ingeniería Termodinámica (12 CNIT), June 19- July 1, Madrid (Spain)
    Resumen
    Photosynthetically Active Radiation (PAR, 400-700 nm) is the energy source to trigger photosynthesis. This process makes food and biomass production and forest productivity possible, so it becomes essential for determining the impact of deforestation and climate change on agriculture. Due to the scarcity of PAR data from direct measurements at ground meteorological stations, empirical models based on linear regressions have been developed for estimate PAR data, using other meteorological and climatic variables. In recent years, machine learning algorithms have been discovered as a useful tool for modelling meteorological and climatic data. Thus, Artificial Neural Networks (ANN) have been used for modelling PAR, with different meteorological variables as input. Both procedures, multilinear regressions and ANN’s, have been used in this work for modelling PAR in Burgos (Spain) under all sky conditions attending to the sky clearness classification and in an hourly basis. The performance of the resulting models has been tested for PAR estimates at other locations. To this end, he experimental data obtained from the Surface Radiation Budget Network (SURFRAD) in the USA was used. This proves the good fit of the models developed in Burgos to the SURFRAD weather stations.
    Palabras clave
    Solar radiation
    Modelling
    PAR
    biomass
    Materia
    Termodinámica
    Thermodynamics
    Energía solar
    Solar energy
    URI
    http://hdl.handle.net/10259/9717
    Aparece en las colecciones
    • Ponencias / Comunicaciones de congresos SWIFT
    Ficheros en este ítem
    Nombre:
    Garcia-12CNIT_2022-(2).pdf
    Tamaño:
    500.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem