Mostrar el registro sencillo del ítem

dc.contributor.authorCabeza-Lopez, Eduardo Manuel
dc.contributor.authorRuiz González, Rubén 
dc.contributor.authorMerino Gómez, Alejandro 
dc.contributor.authorCuriel Herrera, Leticia Elena 
dc.contributor.authorRincón Arango, Jaime Andrés
dc.date.accessioned2024-12-05T13:20:24Z
dc.date.available2024-12-05T13:20:24Z
dc.date.issued2024-11
dc.identifier.isbn978-3-031-75016-8
dc.identifier.isbn978-3-031-75015-1
dc.identifier.urihttp://hdl.handle.net/10259/9761
dc.descriptionComunicación presentada en: 17th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2024) and 15th International Conference on European Transnational Education (ICEUTE 2024), 9-11 October 2024, Salamanca (Spain)en
dc.description.abstractThe purpose of this research is to enhance the security of Internet of Things devices. The deployment of these gadgets has increased exponentially, nowadays they can be found in every sector from industrial environments to applications in residential homes. This technology is important for enterprises due to the ability to manage different kind of data and control critical operations in an efficiently way. Consequently, these devices have become frequent targets of cyberattacks, highlighting the necessity of robust detection methods. However it is a complicated task to find a uniform security solution due to the variety of devices, with different capabilities and requirements. This study evaluates some artificial intelligence supervised learning algorithms such as XGBoost and Random Forest using the TON_IoT dataset, which are new generations of Internet of Things and Industrial datasets for evaluating the fidelity and the efficiency of different cybersecurity applications based on Artificial Intelligence. The analysis shows both algorithms are effective in detecting cyberattacks, achieving accuracies close to 98%, with a minimal variation in terms of precision and recall. These algorithms outperform the results obtained in previous works with the same dataset, then they can provide an additional security layer, allowing accurate identification of potential attacks. This research shows the importance of artificial intelligence algorithms in cybersecurity and their potential to improve the protection of this kind of devices.es
dc.description.sponsorshipThis publication is part of the AI4SECIoT project (“Artificial Intelligence for Securing IoT Devices”), funded by the National Cybersecurity Institute (INCIBE) - Spanish Ministry of Economic Affairs and Digital Transformation, and the European Union (NextGenerationEU*/PRTR).en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherSpringeres
dc.relation.ispartofInternational Joint Conferences (CISIS 2024, ICEUTE 2024), p. 227-236es
dc.subjectArtificial Intelligence (AI)en
dc.subjectInternet of Things (IoT)en
dc.subjectXGBoosten
dc.subjectRandom Forestsen
dc.subjectAttack detectionen
dc.subjectTON_IoT dataseten
dc.subject.otherInformáticaes
dc.subject.otherComputer scienceen
dc.titleA Comparison of AI-Enabled Techniques for the Detection of Attacks in IoT Devicesen
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-031-75016-8_21es
dc.identifier.doi10.1007/978-3-031-75016-8_21
dc.relation.projectIDinfo:eu-repo/grantAgreement/INCIBE//MR5Ñ05/ES/Inteligencia Artificial para la Securización de Dispositivos IoT/es
dc.volume.number957es
dc.page.initial227es
dc.page.final236es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en este ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem