Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Terapia, Familia y Salud (TFS)
    • Artículos TFS
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Terapia, Familia y Salud (TFS)
    • Artículos TFS
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9837

    Título
    Project-Based Learning Guidelines for Health Sciences Students: An Analysis with Data Mining and Qualitative Techniques
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Alonso Martínez, LauraAutoridad UBU Orcid
    Calvo Rodríguez, Alberto
    Martin, Caroline FrançoiseAutoridad UBU
    Publicado en
    Journal of Visualized Experiments. 2022, n. 190, e63601
    Editorial
    MyJove Corporation
    Fecha de publicación
    2022-12
    DOI
    10.3791/63601
    Resumen
    Academic leaders all over the world are encouraging the use of active methodologies in teaching, especially in higher education. The reason for this is that social changes are happening at an ever-increasing rate, and they require students and teachers to develop digital skills. This is especially significant for health sciences degrees, in which future graduates must have effective problem-solving skills. To respond to this challenge, the use of a project-based learning (PBL) methodology, together with various monitoring techniques based on the use of Educational Data Mining (EDM) and mixed methods, will provide teachers with information about the effectiveness of the methodology and guide the implementation of personalized educational responses. This study provides a protocol for the application of the PBL methodology in e-Learning and blended-Learning (b-Learning) teaching modalities for health sciences students studying occupational therapy in higher education. In addition, statistical techniques for the analysis of covariance and unsupervised learning allow differences to be detected between the two teaching modalities, thus specifying their effectiveness in terms of a range of variables related to behavioral patterns, performance, and satisfaction. Data visualization also helps in understanding the qualitative aspects of the learning process. These data will help teachers to produce more effective proposals for the implementation of the PBL methodology based on the based on the context of the teaching-learning process. Therefore, this protocol offers many resources and materials to help teachers implement the PBL methodology in e-Learning and bLearning teaching methods.
    Palabras clave
    Project-based learning
    Educational Data Mining
    Health Sciences
    Mixed methods
    Materia
    Aprendizaje basado en proyectos
    Enseñanza superior
    Education, Higher
    URI
    http://hdl.handle.net/10259/9837
    Versión del editor
    https://doi.org/10.3791/63601
    Aparece en las colecciones
    • Artículos TFS
    Ficheros en este ítem
    Nombre:
    Saiz-jve_2022.pdf
    Tamaño:
    907.6Kb
    Formato:
    Adobe PDF
    Descripción:
    Archivo cerrado
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem