Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4273
Título
A Radical Mechanism for the Vanadium-Catalyzed Deoxydehydration of Glycols
Autor
Publicado en
Inorganic chemistry, 2016, V. 5, n 21, p. 11372–11382
Editorial
American Chemical Society
Fecha de publicación
2016-11
ISSN
0020-1669
Abstract
We propose a novel mechanism for the deoxydehydration (DODH) reaction of glycols catalyzed by a [Bu4N][VO2(dipic)] complex (dipic = pyridine-2,6-dicarboxylate) using triphenylphosphine as a reducing agent. Using density functional theory, we have confirmed that the preferred sequence of reaction steps involves reduction of the V(V) complex by phosphine, followed by condensation of the glycol into a [VO(dipic)(-O-CH2CH2-O-)] V(III) complex (6), which then evolves to the alkene product, with recovery of the catalyst. In contrast to the usually invoked closed-shell mechanism for the latter steps, where 6 suffers a [3+2] retrocycloaddition, we have found that the homolytic cleavage of one of the C–O bonds in 6 is preferred by 12 kcal/mol. The resulting diradical intermediate then collapses to a metallacycle that evolves to the product through an aromatic [2+2] retrocycloaddition. We use this key change in the mechanism to propose ways to design better catalysts for this transformation. The analysis of the mechanisms in both singlet and triplet potential energy surfaces, together with the location of the MECPs between them, showcases this reaction as an interesting example of two-state reactivity.
Materia
Chemistry, Organic
Química orgánica
Versión del editor
Aparece en las colecciones