Zur Kurzanzeige

dc.contributor.authorSandholm, William H.
dc.contributor.authorIzquierdo, Segismundo S.
dc.contributor.authorIzquierdo Millán, Luis Rodrigo 
dc.date.accessioned2020-01-09T12:20:59Z
dc.date.available2020-01-09T12:20:59Z
dc.date.issued2020-01
dc.identifier.issn0022-0531
dc.identifier.urihttp://hdl.handle.net/10259/5203
dc.description.abstractWe study a family of population game dynamics under which each revising agent randomly selects a set of strategies according to a given test-set rule; tests each strategy in this set a fixed number of times, with each play of each strategy being against a newly drawn opponent; and chooses the strategy whose total payoff was highest, breaking ties according to a given tie-breaking rule. These dynamics need not respect dominance and related properties except as the number of trials become large. Strict Nash equilibria are rest points but need not be stable. We provide a variety of sufficient conditions for stability and for instability, and illustrate their use through a range of applications from the literature.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieren
dc.relation.ispartofJournal of Economic Theory. 2010. V. 185, 104957en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEvolutionary game dynamicsen
dc.subjectBest experienced payoff dynamicsen
dc.subjectSampling dynamicsen
dc.subjectDynamic stabilityen
dc.subject.otherEconomíaes
dc.subject.otherEconomicsen
dc.subject.otherGestión de empresases
dc.subject.otherIndustrial managementen
dc.titleStability for best experienced payoff dynamicsen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1016/j.jet.2019.104957es
dc.identifier.doi10.1016/j.jet.2019.104957
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige