Show simple item record

dc.contributor.authorKashaninejad, M.
dc.contributor.authorSanz Díez, Mª Teresa 
dc.contributor.authorBlanco, Beatriz
dc.contributor.authorBeltrán Calvo, Sagrario 
dc.contributor.authorNiknam, S.Mehdi
dc.date.accessioned2020-09-22T09:00:02Z
dc.date.available2020-09-22T09:00:02Z
dc.date.issued2020-11
dc.identifier.issn0960-3085
dc.identifier.urihttp://hdl.handle.net/10259/5472
dc.description.abstractValorization of olive leaves (OL) in a biorefinery context should include extraction of bioactive compounds, specially taking into account the high content of extractives of this by-product. Extraction of bioactive compounds from Spanish OL (cultivar “Serrana de Espadán”) was studied by conventional and ultrasound assisted extraction (UAE). Faster extraction was observed by UAE, although similar final extraction yield was reached by both technologies. The best extraction solvent was an 80% ethanol hydroalcoholic mixture at a ratio of 20 mL per gram of dried OL (DOL). At these conditions the highest content of oleuropein and luteolin-7-O-glucoside was determined as 31 ± 2 and 4.1 ± 0.2 mg/gDOL. The power law and the Weibull models fitted the total phenolic compounds extraction kinetics quite well. The major soluble carbohydrate was mannitol, with a content of 4.48 ± 0.09 mg/gDOL in the extract. The influence of OL source was also studied and it was concluded that the leaves collected as wastes from the factory presented the highest phenolic yield and antioxidant capacity. The optimum extract was freeze dried resulting in a solid power with more than 11% of oleuropein and 17% of mannitol. Antioxidant activity of the freeze-dried extract was preserved for two months.en
dc.description.sponsorshipJunta de Castilla y León(JCyL) and the European Regional Development Fund (ERDF)[grant number BU301P18]; and the Agencia Estatal deInvestigación [grant number PID2019−104950RB-I00 / AEI /10.13039/501,100,011,033].Conflict of interestThe authors declare no Conflict of InterestReferencesAbaza, L., Taamalli, A., Nsir, H., Zarrouk, M., 2015. Olive tree (Oleaeuropeae L.) leaves: importance and advances in the analysisof phenolic compounds. Antioxidants 4, 682–698,http://dx.doi.org/10.3390/antiox4040682.Alonso-Ria ̃no, P. , Sanz Diez, M.T., Blanco, B., Beltrán, S., Trigueros,E., Benito-Román, O., 2020. Water ultrasound-assistedextraction of polyphenol compounds from Brewer’s spentgrain: kinetic study, extract characterization, andconcentration. Antioxidants 9, 265,http://dx.doi.org/10.3390/antiox9030265.Alves, L.A., Almeida E Silva, J.B., Giulietti, M., 2007. Solubility ofD-glucose in water and ethanol/water mixtures. J. Chem. Eng.Data 52, 2166–2170, http://dx.doi.org/10.1021/je700177n.Amendola, D., De Faveri, D.M., Spigno, G., 2010. Grape marcphenolics: extraction kinetics, quality and stability ofextracts. J. Food Eng. 97, 384–392,http://dx.doi.org/10.1016/j.jfoodeng.2009.10.033.Ben, M., Guasmi, F. , Ben, S., Radhouani, F. , Faghim, J., Triki, T. ,Grati, N., Ba, C., Lucini, L., Benincasa, C., 2018. The LC-MS / MScharacterization of phenolic compounds in leaves allowsclassifying olive cultivars grown in South. Tunisia 78, 84–90,http://dx.doi.org/10.1016/j.bse.2018.04.005.Benzie, I.F.F., Strain, J.J., 1996. The ferric reducing ability of plasma(FRAP) as a measure of “Antioxidant power”: the FRAP assay.Anal. Biochem. 239, 70–76,http://dx.doi.org/10.1006/abio.1996.0292.Bilgin, M., S ̧ ahin, S., 2013. Effects of geographical origin andextraction methods on total phenolic yield of olive tree (Oleaeuropaea) leaves. J. Taiwan Inst. Chem. Eng. 44, 8–12,http://dx.doi.org/10.1016/j.jtice.2012.08.008.Bouaziz, M., Sayadi, S., 2005. Isolation and evaluation ofantioxidants from leaves of a Tunisian cultivar olive tree. Eur.J. Lipid Sci. Technol. 107, 497–504,http://dx.doi.org/10.1002/ejlt.200501166.Brand-Williams, W. , Cuvelier, M.E., Berset, C., 1995. Use of a freeradical method to evaluate antioxidant activity. LW T - FoodSci. Technol. 28, 25–30,http://dx.doi.org/10.1016/S0023-6438(95)80008-5.es
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofFood and Bioproducts Processing. 2020, V. 124, p. 196-207es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOlive leavesen
dc.subjectPhenolic compoundsen
dc.subjectOleuropeinen
dc.subjectMannitolen
dc.subjectKinetic modelen
dc.subjectFreeze-dried extracten
dc.subject.otherIngeniería químicaes
dc.subject.otherChemical engineeringen
dc.subject.otherAlimentoses
dc.subject.otherFooden
dc.titleFreeze dried extract from olive leaves: Valorisation, extraction kinetics and extract characterizationen
dc.typeinfo:eu-repo/semantics/article
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.relation.publisherversionhttps://doi.org/10.1016/j.fbp.2020.08.015
dc.identifier.doi10.1016/j.fbp.2020.08.015
dc.relation.projectIDinfo:eu-repo/grantAgreement/JCyL/BU301P18
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/PID2019−104950RB-I00-AEI-10.13039/501,100,011,033
dc.journal.titleFood and Bioproducts Processingen
dc.volume.number124es
dc.page.initial196es
dc.page.final207es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion


Files in this item

This item appears in the following Collection(s)

Show simple item record