Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6776

    Título
    Fast and Scalable Global Convergence in Single-Optimum Decentralized Coordination Problems
    Autor
    Izquierdo Millán, Luis RodrigoUBU authority Orcid
    Izquierdo, Segismundo S.
    Rodríguez, Javier
    Publicado en
    IEEE Transactions on Control of Network Systems. 2022
    Editorial
    Institute of Electrical and Electronics Engineers (IEEE)
    Fecha de publicación
    2022-06
    ISSN
    2325-5870
    DOI
    10.1109/TCNS.2022.3181545
    Abstract
    Over the past few years, the scientific community has been studying the usefulness of evolutionary game theory to solve distributed control problems. In this paper we analyze a simple version of the Best Experienced Payoff (BEP) algorithm, a revision protocol recently proposed in the evolutionary game theory literature. This revision protocol is simple, completely decentralized and has minimum information requirements. Here we prove that adding some noise to this protocol can lead to efficient results in single-optimum coordination problems in little time, even in large populations of agents. We also test the algorithm under a wide range of different conditions using computer simulation. In particular, we consider different numbers of agents and of strategies, and we analyze the robustness of the algorithm to different updating schemes (e.g. synchronous vs asynchronous) and to different types of interaction networks (e.g. ring, preferential attachment, small world and complete). In all cases, using the noisy version of BEP, the agents quickly approach a small neighborhood of the optimal state from every initial condition, and spend most of the time in that neighborhood.
    Palabras clave
    Best experienced payoff
    Decentralized algorithms
    Distributed control
    Evolutionary dynamics
    Evolutionary game theory
    Large population double limit
    Small noise limit
    Materia
    Ingeniería
    Engineering
    URI
    http://hdl.handle.net/10259/6776
    Versión del editor
    https://doi.org/10.1109/TCNS.2022.3181545
    Collections
    • Untitled
    Files in this item
    Nombre:
    Izquierdo-IEEEtcns_2022.pdfEmbargado hasta: 2024-06-11
    Tamaño:
    2.659Mb
    Formato:
    Adobe PDF
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record