Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6904
Título
Predicting on-time deliveries in trucking: A model based on the working conditions of drivers
Publicado en
R-Evolucionando el transporte
Editorial
Universidad de Burgos. Servicio de Publicaciones e Imagen Institucional
Fecha de publicación
2021-07
ISBN
978-84-18465-12-3
DOI
10.36443/10259/6904
Descripción
Trabajo presentado en: R-Evolucionando el transporte, XIV Congreso de Ingeniería del Transporte (CIT 2021), realizado en modalidad online los días 6, 7 y 8 de julio de 2021, organizado por la Universidad de Burgos
Zusammenfassung
Over a period of two years, 26.3 thousand road freight shipments were recorded. The
records include information about truckload companies, drivers, and the causes of noncompliance
and delays in deliveries. Logistic regression based in working conditions as
independent variables was used to predict non-compliance deliveries attributed to cargo
drivers. Results show that vehicle type, medical coverage and social security, level of
stress, work dissatisfaction, and transit time were strongly associated with out-of-timedelays
in deliveries. The proposed model is a promising tool to improve the performance
of truckload companies and it may motivate to benefit working conditions of truckers.
Palabras clave
Logística
Logistics
Operaciones
Operations
Transporte de mercancías
Transportation of goods
Materia
Transportes
Transportation
Organización del trabajo
Methods engineering
Versión del editor
Relacionado con
Aparece en las colecciones