Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7267

    Título
    A hybrid intelligent system for the analysis of atmospheric pollution: a case study in two European regions
    Autor
    Arroyo Puente, ÁngelUBU authority Orcid
    Herrero Cosío, ÁlvaroUBU authority Orcid
    Corchado, EmilioUBU authority Orcid
    Tricio Gómez, VerónicaUBU authority
    Publicado en
    Logic Journal of the IGPL. 2017, V. 25, n. 6, p. 915-937
    Editorial
    Oxford University Press
    Fecha de publicación
    2017-12
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzx050
    Abstract
    The combined application of several soft-computing and statistical techniques is proposed for the characterization of atmospheric conditions in two European regions: Madrid (Spain) and Prague (Czech Republic). The resulting Hybrid Artificial Intelligence System (HAIS) combines projection models for dimensionality reduction and clustering, combining neural and fuzzy paradigms, in a decision support tool. In present article, this proposed HAIS is applied to analyse the air quality in these two geographical regions and get a better understanding of its circumstances and evolution. To do so, real-life data from six data-acquisition stations are analysed. The main pollutants recorded at these stations between 2007 and 2014, their geographical locations and seasonal changes are all studied, in a research that shows how such factors determine variations in air-borne pollutants. Furthermore, neural projections of the clustering results from data on atmospheric pollution are studied.
    Palabras clave
    Hybrid systems
    Clustering techniques
    Air quality
    Projection models
    Artificial neural networks
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7267
    Versión del editor
    https://doi.org/10.1093/jigpal/jzx050
    Collections
    • Artículos Física Aplicada
    • Artículos GICAP
    Files in this item
    Nombre:
    Arroyo-igpl_2017.pdf
    Tamaño:
    869.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record