Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7352

    Título
    Experimental Assessment of Feature Extraction Techniques Applied to the Identification of Properties of Common Objects, Using a Radar System
    Autor
    Diez Pastor, José FranciscoAutoridad UBU Orcid
    Latorre Carmona, PedroAutoridad UBU Orcid
    Garrido Labrador, José LuisAutoridad UBU Orcid
    Ramírez Sanz, José MiguelAutoridad UBU Orcid
    Rodríguez Diez, Juan JoséAutoridad UBU Orcid
    Publicado en
    Applied sciences. 2021, V. 11, n. 15, 6745
    Editorial
    MDPI
    Fecha de publicación
    2021-07
    DOI
    10.3390/app11156745
    Resumen
    Radar technology has evolved considerably in the last few decades. There are many areas where radar systems are applied, including air traffic control in airports, ocean surveillance, and research systems, to cite a few. Other types of sensors have recently appeared, which allow tracking sub-millimeter motion with high speed and accuracy rates. These millimeter-wave radars are giving rise to myriad new applications, from the recognition of the material close objects are made, to the recognition of hand gestures. They have also been recently used to identify how a person interacts with digital devices through the physical environment (Tangible User Interfaces, TUIs). In this case, the radar is used to detect the orientation, movement, or distance from the objects to the user’s hands or the digital device. This paper presents a thoughtful comparative analysis of different feature extraction techniques and classification strategies applied on a series of datasets that cover problems such as the identification of materials, element counting, or determining the orientation and distance of objects to the sensor. The results outperform previous works using these datasets, especially when the accuracy was lowest, showing the benefits feature extraction techniques have on classification performance.
    Palabras clave
    Radar signal
    Feature extraction
    Classification
    Stacking
    Tangible user interfaces
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7352
    Versión del editor
    https://doi.org/10.3390/app11156745
    Aparece en las colecciones
    • Artículos ADMIRABLE
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Diez-as_2021.pdf
    Tamaño:
    1.942Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem