Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7755

    Título
    Using Eye Tracking Technology to Analyse Cognitive Load in Multichannel Activities in University Students
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Marticorena Sánchez, RaúlAutoridad UBU Orcid
    Martín Antón, Luis Jorge
    González Díez, IreneAutoridad UBU Orcid
    Carbonero Martín, Miguel Ángel
    Publicado en
    International Journal of Human–Computer Interaction. 2023
    Editorial
    Taylor & Francis
    Fecha de publicación
    2023
    ISSN
    1044-7318
    DOI
    10.1080/10447318.2023.2188532
    Resumen
    Monitoring through the use of eye-tracking technology helps in understanding the cognitive load learners experience when doing tasks. This data gives the teacher and the student important information for improving learning outcomes. This study examined whether students’ participation in a learning virtual laboratory, with a self-regulated video monitored with eye-tracking, would influence their learning outcomes. It also examined whether students’ prior knowledge affected their learning outcomes. Lastly, the study identified clusters related to cognitive load in relevant Areas of Interest vs. non-relevant Areas of Interest. The sample comprised 42 university students of health sciences. The results indicate that participation in the virtual laboratory was related to better learning outcomes. In addition, prior knowledge did not affect cognitive load. A number of different clusters were found related to indicators of cognitive load in relevant and non-relevant AOIs. More applied studies are needed about the effects of monitoring on learning outcomes and on what it means for individualization of learning.
    Palabras clave
    Self-regulated learning
    Cognitive load
    Eye tracking
    Machine learning
    Effective learning
    Materia
    Enseñanza superior
    Education, Higher
    Psicología
    Psychology
    Tecnología
    Technology
    URI
    http://hdl.handle.net/10259/7755
    Versión del editor
    https://doi.org/10.1080/10447318.2023.2188532
    Aparece en las colecciones
    • Artículos ADMIRABLE
    • Artículos DATAHES
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Saiz-ijhci_2023.pdf
    Tamaño:
    3.192Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem