Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Quimiometría y Cualimetría (Q&C)
    • Artículos Q&C
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Quimiometría y Cualimetría (Q&C)
    • Artículos Q&C
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7757

    Título
    Logical analysis of sample pooling for qualitative analytical testing
    Autor
    Sarabia Peinador, Luis AntonioAutoridad UBU Orcid
    Valencia García, OlgaAutoridad UBU Orcid
    Ortiz Fernández, Mª CruzAutoridad UBU Orcid
    Publicado en
    Chemometrics and Intelligent Laboratory Systems. 2023, V. 240, 104902
    Editorial
    Elsevier
    Fecha de publicación
    2023-09
    ISSN
    0169-7439
    DOI
    10.1016/j.chemolab.2023.104902
    Resumen
    When the prevalence of positive samples in a whole population is low, the pooling of samples to detect them has been widely used for epidemic control. However, its usefulness for applying analytical screening procedures in food safety (microbiological or allergen control), fraud detection or environmental monitoring is also evident. The expected number of tests per individual sample that is necessary to identify all ‘positives’ is a measure of the efficiency of a sample pooling strategy. Reducing this figure is key to an effective use of available resources in environmental control and food safety. This reduction becomes critical when the availability of analytical tests is limited, as the SARS-CoV-2 pandemic showed. The outcome of the qualitative analytical test is binary. Therefore, the operation governing the outcome of the pooled samples is not an algebraic sum of the individual results but the logical operator (‘or’ in natural language). Consequently, the problem of using pooled samples to identify positive samples naturally leads to proposing a system of logical equations. Therefore, this work suggests a new strategy of sample pooling based on: i) A half-fraction of a Placket-Burman design to make the pooled samples and ii) The logical resolution, not numerical, to identify the positive samples from the outcomes of the analysis of the pooled samples. For a prevalence of ‘positive’ equal to 0.05 and 10 original samples to be pooled, the algorithm presented here results in an expected value per individual equal to 0.37, meaning a 63% reduction in the expected number of tests per individual sample. With sensitivities and specificities of the analytical test ranging from 0.90 to 0.99, the expected number of tests per individual ranges from 0.332 to 0.416, always higher than other pooled testing algorithms. In addition, the accuracy of the algorithm proposed is better or similar to that of other published algorithms, with an expected number of hits ranging from 99.16 to 99.90%. The procedure is applied to the detection of food samples contaminated with a pathogen (Listeria monocytogenes) and others contaminated with an allergen (Pistachio) by means of Polymerase Chain Reaction, PCR, test.
    Palabras clave
    Sample pooling
    Supersaturated designs
    Logical modeling
    Allergen (Pistachio)
    Pathogen (Listeria monocytogenes)
    Polymerase chain reaction
    Materia
    Química analítica
    Chemistry, Analytic
    Matemáticas
    Mathematics
    URI
    http://hdl.handle.net/10259/7757
    Versión del editor
    https://doi.org/10.1016/j.chemolab.2023.104902
    Aparece en las colecciones
    • Artículos Q&C
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Sarabia-cils_2023.pdf
    Tamaño:
    2.435Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Nombre:
    Sarabia-cils_2023-anexo1.docx
    Tamaño:
    13.79Kb
    Formato:
    Microsoft Word XML
    Descripción:
    Código de programa
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem