Mostrar el registro sencillo del ítem
dc.contributor.author | Basurto Hornillos, Nuño | |
dc.contributor.author | Arroyo Puente, Ángel | |
dc.contributor.author | Cambra Baseca, Carlos | |
dc.contributor.author | Herrero Cosío, Álvaro | |
dc.date.accessioned | 2024-01-08T13:24:56Z | |
dc.date.available | 2024-01-08T13:24:56Z | |
dc.date.issued | 2022-02 | |
dc.identifier.issn | 1367-0751 | |
dc.identifier.uri | http://hdl.handle.net/10259/8248 | |
dc.description.abstract | In the field of cybernetic systems and more specifically in robotics, one of the fundamental objectives is the detection of anomalies in order to minimize loss of time. Following this idea, this paper proposes the implementation of a Hybrid Intelligent System in four steps to impute the missing values, by combining clustering and regression techniques, followed by balancing and classification tasks. This system applies regression models to each one of the clusters built on the instances of data set. Subsequently, a variety of balancing techniques are applied to improve the classifier’s ability to discern whether it is in an error or a normal state. These techniques support to obtain better classification ratios in which a robot is close to error and allow us to bring the behavior back to a normal state. The experimentation is performed using a modern and public data set, which has been extracted from a component-based robotic system, in which different anomalies are induced by software in their components. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | Oxford University Press | en |
dc.relation.ispartof | Logic Journal of the IGPL. 2023, V. 31, n. 2, p. 338-351 | es |
dc.subject | Hybrid Artificial Intelligence System | en |
dc.subject | Machine learning | en |
dc.subject | Clustering | en |
dc.subject | Regression | en |
dc.subject | Missing values | en |
dc.subject | Component-Based Robot | en |
dc.subject.other | Informática | es |
dc.subject.other | Computer science | en |
dc.title | A hybrid machine learning system to impute and classify a component-based robot | en |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.1093/jigpal/jzac023 | es |
dc.identifier.doi | 10.1093/jigpal/jzac023 | |
dc.identifier.essn | 1368-9894 | |
dc.journal.title | Logic Journal of the IGPL | en |
dc.volume.number | 31 | es |
dc.issue.number | 2 | es |
dc.page.initial | 338 | es |
dc.page.final | 351 | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |