Mostrar el registro sencillo del ítem
dc.contributor.author | Curiel Herrera, Leticia Elena | |
dc.contributor.author | Baruque Zanón, Bruno | |
dc.contributor.author | Dueñas, Carlos | |
dc.contributor.author | Corchado, Emilio | |
dc.contributor.author | Pérez-Tárrago, Cristina | |
dc.date.accessioned | 2024-02-05T08:13:13Z | |
dc.date.available | 2024-02-05T08:13:13Z | |
dc.date.issued | 2011 | |
dc.identifier.isbn | 978-3-642-23878-9 | |
dc.identifier.uri | http://hdl.handle.net/10259/8572 | |
dc.description | Trabajo presentado en: 12th International Conference, Norwich, UK, September 7-9, 2011. Proceedings | en |
dc.description.abstract | This ongoing interdisciplinary research is based on the application of genetic algorithms to simplify the process of predicting the mortality of a critical illness called endocarditis. The goal is to determine the most relevant features (symptoms) of patients (samples) observed by doctors to predict the possible mortality once the patient is in treatment of bacterial endocarditis. This can help doctors to prognose the illness in early stages; by helping them to identify in advance possible solutions in order to aid the patient recover faster. The results obtained using a real data set, show that using only the features selected by employing a genetic algorithm from each patient’s case can predict with a quite high accuracy the most probable evolution of the patient. | en |
dc.description.sponsorship | We would like to extend our thanks to Complejo Hospitalario Asistencial Universitario de Burgos (SACYL). This research has been partially supported through projects TIN2010-21272-C02-01 from the Spanish Ministry of Science and Innovation and Grupo Antolin Ingenieria, S.A., within the framework of project MAGNO2008 - 1028.- CENIT. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.relation.ispartof | Intelligent Data Engineering and Automated Learning -- IDEAL 2011, p. 454–462 | en |
dc.subject | Genetic algorithms | en |
dc.subject | Support vector machine | en |
dc.subject | Infective endocarditis | en |
dc.subject | Feature selection algorithm | en |
dc.subject | Imperialist competitive algorithm | en |
dc.subject.other | Informática | es |
dc.subject.other | Computer science | en |
dc.subject.other | Medicina | es |
dc.subject.other | Medicine | en |
dc.title | Genetic Algorithms to Simplify Prognosis of Endocarditis | en |
dc.type | info:eu-repo/semantics/bookPart | es |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-642-23878-9_54 | es |
dc.identifier.doi | 10.1007/978-3-642-23878-9_54 | |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |