Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8583
Título
A soft computing method for detecting lifetime building thermal insulation failures
Autor
Publicado en
Integrated Computer-Aided Engineering. 2010, V. 17, n. 2, p. 103-115
Editorial
IOS Press
Fecha de publicación
2010-04
ISSN
1069-2509
DOI
10.3233/ICA-2010-0337
Resumen
The detection of thermal insulation failures in buildings in operation responds to the challenge of improving building energy efficiency. This multidisciplinary study presents a novel four-step soft computing knowledge identification model called IKBIS to perform thermal insulation failure detection. It proposes the use of Exploratory Projection Pursuit methods to study the relation between input and output variables and data dimensionality reduction. It also applies system identification theory and neural networks for modeling the thermal dynamics of the building. Finally, the novel model is used to predict dynamic thermal biases, and two real cases of study as part of its empirical validation.
Materia
Informática
Computer science
Versión del editor
Aparece en las colecciones