Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9356
Título
A Cooperative Unsupervised Connectionist Model to Identify the Optimal Conditions of a Pneumatic Drill
Publicado en
Soft Computing as Transdisciplinary Science and Technology, n. 29, p. 725-734
Editorial
Springer Nature
Fecha de publicación
2005
ISBN
978-3-540-25055-5
DOI
10.1007/3-540-32391-0_77
Descripción
Trabajo presentado en: 4th IEEE International Workshop (WSTST), realizado el 25, 26 y 27 de mayo 2005, en Muroran (Japón)
Résumé
A novel connectionist method to feature selection is proposed in this paper to identify the optimal conditions to perform drilling tasks. The aim is to extract information from complex high dimensional data sets. The model used is based on a family of cost functions which maximizes the likelihood of identifying a specific distribution in a data set. It employs lateral connections derived from the Rectified Gaussian Distribution to enforce a more sparse representation in each weight vector. The data investigated is obtained from the sensors allocated in a robot used to drill and build industrial warehouses. It is hoped that in classifying this data related with the strength, the water volume for refrigerating, speed and time of each sample, it will help in the search of the best conditions to perform the drilling of reinforce concrete slabs. This would produce a great saving for the company which owns the drilling robot.
Materia
Informática
Computer science
Ingeniería civil
Civil engineering
Versión del editor
Aparece en las colecciones