Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz González, Rubén 
dc.contributor.authorNascimento, Antonia Maiara Marques do
dc.contributor.authorSantos, Marcos Bruno da Costa
dc.contributor.authorPorto, Rutten Kécio Soares de Brito
dc.contributor.authorMedeiros, Artur Mendes
dc.contributor.authorSantos, Fábio Sandro dos
dc.contributor.authorMartínez-Martínez, Víctor
dc.contributor.authorBarroso, Priscila Alves
dc.date.accessioned2024-12-05T12:23:31Z
dc.date.available2024-12-05T12:23:31Z
dc.date.issued2024
dc.identifier.issn0941-0643
dc.identifier.urihttp://hdl.handle.net/10259/9759
dc.description.abstractBeing capable of accurately predicting morphological parameters of the plant weeks before achieving fruit maturation is of great importance in the production and selection of suitable ornamental pepper plants. The objective of this article is evaluating the feasibility and assessing the performance of CNN-based models using RGB images as input to forecast two morphological parameters: plant height and canopy diameter. To this end, four CNN-based models are proposed to predict these morphological parameters in four different scenarios: first, using as input a single image of the plant; second, using as input several images from different viewpoints of the plant acquired on the same date; third, using as input two images from two consecutive weeks; and fourth, using as input a set of images consisting of one image from each week up to the current date. The results show that it is possible to accurately predict both plant height and canopy diameter. The RMSE for a forecast performed 6 weeks in advance to the actual measurements was below 4.5 cm and 4.2 cm, respectively. When information from previous weeks is added to the model, better results can be achieved and as the prediction date gets closer to the assessment date the accuracy improves as well.en
dc.description.sponsorshipFinanciación en Acceso Abierto gracias al convenio CRUE-CSIC con Springer Nature. Esta investigación fue financiada por el CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), subvención número 408444/2021–5.en
dc.format.mimetypeapplication/pdf
dc.language.isoenges
dc.publisherSpringeres
dc.relation.ispartofNeural Computing and Applications. 2024,es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectImage-based temporal predictionen
dc.subjectMorphological parametersen
dc.subjectOrnamental potentialen
dc.subjectPrecision agricultureen
dc.subjectSolanaceaeen
dc.subjectThermal stressen
dc.subject.otherRedes neuronales artificialeses
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherAgriculturaes
dc.subject.otherAgricultureen
dc.titleTemporal forecasting of plant height and canopy diameter from RGB images using a CNN-based regression model for ornamental pepper plants (Capsicum spp.) growing under high-temperature stressen
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttps://doi.org/10.1007/s00521-024-10502-wes
dc.identifier.doi10.1007/s00521-024-10502-w
dc.identifier.essn1433-3058
dc.journal.titleNeural Computing and Applicationses
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en este ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem