Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Quimiometría y Cualimetría (Q&C)
    • Artículos Q&C
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Quimiometría y Cualimetría (Q&C)
    • Artículos Q&C
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9961

    Título
    Differentiating five agrochemicals used in the treatment of intact olives by means of NIR spectroscopy, discriminant analysis and compliant class models
    Autor
    Castro Reigía, David
    García Esteban-Barcina, Iker
    Sanllorente Méndez, SilviaAutoridad UBU Orcid
    Sarabia Peinador, Luis AntonioAutoridad UBU Orcid
    Ortiz Fernández, Mª CruzAutoridad UBU Orcid
    Publicado en
    Microchemical Journal. 2024, V. 206, 111550
    Editorial
    Elsevier
    Fecha de publicación
    2024-11
    ISSN
    0026-265X
    DOI
    10.1016/j.microc.2024.111550
    Resumen
    This paper deals with the application of near infrared spectroscopy (NIR) in a classification problem involving multiple classes in order to differentiate contaminated olives. A total of 452 samples, ripe and unripe, were treated with five different agrochemicals reproducing the traditional fumigation process in the olive tree. The main objective was to differentiate through a classification if the samples were or were not treated, but also, which chemical was used for each olive. Firstly, Partial Least Squares-Discriminant Analysis (PLS-DA) was performed to differentiate between untreated and treated samples. Then, two novel chemometric approaches, a classification one and a modelling one, were applied for ripe and unripe olives, achieving good results and determining with which chemical were the olives sprinkled with. For the classification of the samples in the six different classes (untreated olives, or treated with one of the five agrochemicals), an Automatic Hierarchical Model Builder (AHIMBU) was used, applying sequential binary PLS-DAs. Nevertheless, for the modelling approach, a compliant model, PLS2-CM, also based on PLS, was used with two different codifications for the classes: i) the classic and well-known One Versus All (OVA), and ii) the Error Correction Output Code (ECOC) optimal matrix. The final global results were evaluated using the Diagonal Modified Confusion Entropy (DMCEN) index, which ranges between 0 and 1, and is very sensitive to changes in the sensitivity–specificity matrices (note that the lower the DMCEN, the better the classification is). The best DMCEN value in prediction for unripe olives, 0.4898, was obtained for the PLS2-CM-ECOC, while 0.6937 and 0.7705 DMCEN values were obtained for AHIMBU and PLS2-CM-OVA, respectively. For the case of the ripe samples, the DMCEN values in prediction were better than the ones for the unripe olives: 0.6016, 0.5051, and 0.4166, for AHIMBU, PLS2-CM-OVA and PLS2-CM-ECOC, respectively. In every case, the best DMCEN has been obtained with the PLS2-CM-ECOC procedure.
    Palabras clave
    ECOC
    PLS-DA
    AIHMBU
    DMCEN
    NIR spectroscopy
    Sensitivity
    Specificity
    Materia
    Química
    Chemistry
    Química analítica
    Chemistry, Analytic
    Alimentos
    Food
    URI
    http://hdl.handle.net/10259/9961
    Versión del editor
    https://doi.org/10.1016/j.microc.2024.111550
    Aparece en las colecciones
    • Artículos Q&C
    Atribución-NoComercial 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución-NoComercial 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Castro-mj_2024.pdf
    Tamaño:
    4.137Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem