Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contact Us
  • Send Feedback
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of RIUBUCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Compartir

    View Item 
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item
    •   RIUBU Home
    • E-Prints
    • Untitled
    • Untitled
    • Untitled
    • View Item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/10274

    Título
    Using Serious Game Techniques with Health Sciences and Biomedical Engineering Students: An Analysis Using Machine Learning Techniques
    Autor
    Sáiz Manzanares, María ConsueloUBU authority Orcid
    Marticorena Sánchez, RaúlUBU authority Orcid
    Escolar Llamazares, María del CaminoUBU authority Orcid
    González Díez, IreneUBU authority Orcid
    Velasco Saiz, Rut
    Publicado en
    Computers. 2024, V. 15, n. 12, 804
    Editorial
    MDPI
    Fecha de publicación
    2024
    DOI
    10.3390/info15120804
    Abstract
    The use of serious games on virtual learning platforms as a learning support resource is increasingly common. They are especially effective in helping students acquire mainly applied curricular content. However, a process is required to monitor the effectiveness and students’ perceived satisfaction. The objectives of this study were to (1) identify the most significant characteristics; (2) determine the most relevant predictors of learning outcomes; (3) identify groupings with respect to the different serious game activities; and (4) to determine students’ perceptions of the usefulness of the simple and complex serious game activities. We worked with a sample of 130 university students studying health sciences and biomedical engineering. The serious game activities were applied in a Moodle environment, UBUVirtual, and monitored using the UBUMonitor tool. The degree type and the type of serious game explained differing percentages of the variance in the learning results in the assessment tests (34.4%—multiple choice tests [individual assessment]; 11.2%—project performance [group assessment]; 25.6%—project presentation [group assessment]). Different clusters were found depending on the group of students and the algorithm applied. The Adjusted Rang Index was applied to determine the most appropriate algorithm in each case. The student satisfaction was high in all the cases. However, they indicated complex serious games as being more useful than simple serious games as learning resources for the practical content in both health sciences and biomedical engineering degrees.
    Palabras clave
    Serious games
    Machine learning
    Learning monitoring
    Branching scenario
    Materia
    Tecnología
    Technology
    Informática
    Computer science
    Psicología
    Psychology
    Enseñanza superior
    Education, Higher
    URI
    http://hdl.handle.net/10259/10274
    Versión del editor
    https://doi.org/10.3390/info15120804
    Collections
    • Untitled
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Files in this item
    Nombre:
    Sáiz-information_2024.pdf
    Tamaño:
    6.110Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Show full item record