Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7222
Título
Generalized noncommutative Snyder spaces and projective geometry
Publicado en
Proceedings of Science. 2020, V. 376, p. 190-205
Editorial
Sissa
Fecha de publicación
2020-08
ISSN
1824-8039
DOI
10.22323/1.376.0190
Descripción
Trabajo presentado en: Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019) - Workshop on Quantum Geometry, Field Theory and Gravity, 31 August - 25 September, Corfù, Greece
Resumen
Given a group of kinematical symmetry generators, one can construct a compatible noncommutative spacetime and deformed phase space by means of projective geometry. This was the main
idea behind the very first model of noncommutative spacetime, proposed by H.S. Snyder in 1947.
In this framework, spacetime coordinates are the translation generators over a manifold that is
symmetric under the required generators, while momenta are projective coordinates on such a
manifold. In these proceedings we review the construction of Euclidean and Lorentzian noncommutative Snyder spaces and investigate the freedom left by this construction in the choice of the
physical momenta, because of different available choices of projective coordinates. In particular,
we derive a quasi-canonical structure for both the Euclidean and Lorentzian Snyder noncommutative models such that their phase space algebra is diagonal although no longer quadratic.
Materia
Física
Physics
Versión del editor
Aparece en las colecciones
Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional