Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7252
Título
Gaining deep knowledge of Android malware families through dimensionality reduction techniques
Autor
Publicado en
Logic Journal of the IGPL. 2019, V. 27, n. 2, p. 160-176
Editorial
Oxford University Press
Fecha de publicación
2019-04
ISSN
1367-0751
DOI
10.1093/jigpal/jzy030
Résumé
This research proposes the analysis and subsequent characterisation of Android malware families by means of low
dimensional visualisations using dimensional reduction techniques. The well-known Malgenome data set, coming from
the Android Malware Genome Project, has been thoroughly analysed through the following six dimensionality reduction
techniques: Principal Component Analysis, Maximum Likelihood Hebbian Learning, Cooperative Maximum Likelihood
Hebbian Learning, Curvilinear Component Analysis, Isomap and Self Organizing Map. Results obtained enable a clear visual
analysis of the structure of this high-dimensionality data set, letting us gain deep knowledge about the nature of such Android
malware families. Interesting conclusions are obtained from the real-life data set under analysis.
Palabras clave
Android malware
Malware families
Dimensionality reduction
Artificial neural networks
Materia
Informática
Computer science
Versión del editor
Aparece en las colecciones