Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Entre em contato
  • Deixe sua opinião
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

    Minha conta

    EntrarCadastro

    Estatísticas

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Ver item
    •   Página inicial
    • E-Prints
    • Untitled
    • Untitled
    • Artículos GICAP
    • Ver item

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8248

    Título
    A hybrid machine learning system to impute and classify a component-based robot
    Autor
    Basurto Hornillos, NuñoAutoridad UBU Orcid
    Arroyo Puente, ÁngelAutoridad UBU Orcid
    Cambra Baseca, CarlosAutoridad UBU Orcid
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Publicado en
    Logic Journal of the IGPL. 2023, V. 31, n. 2, p. 338-351
    Editorial
    Oxford University Press
    Fecha de publicación
    2022-02
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzac023
    Resumo
    In the field of cybernetic systems and more specifically in robotics, one of the fundamental objectives is the detection of anomalies in order to minimize loss of time. Following this idea, this paper proposes the implementation of a Hybrid Intelligent System in four steps to impute the missing values, by combining clustering and regression techniques, followed by balancing and classification tasks. This system applies regression models to each one of the clusters built on the instances of data set. Subsequently, a variety of balancing techniques are applied to improve the classifier’s ability to discern whether it is in an error or a normal state. These techniques support to obtain better classification ratios in which a robot is close to error and allow us to bring the behavior back to a normal state. The experimentation is performed using a modern and public data set, which has been extracted from a component-based robotic system, in which different anomalies are induced by software in their components.
    Palabras clave
    Hybrid Artificial Intelligence System
    Machine learning
    Clustering
    Regression
    Missing values
    Component-Based Robot
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8248
    Versión del editor
    https://doi.org/10.1093/jigpal/jzac023
    Aparece en las colecciones
    • Artículos GICAP
    Arquivos deste item
    Nombre:
    Basurto-ljigpl_2023.pdf
    Tamaño:
    463.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar registro completo