Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6261

    Título
    Detección del alumno en riesgo en titulaciones de Ciencias de la Salud: aplicación de técnicas de Learning Analytics
    Otro título
    Detection of at-risk students with Learning Analytics Techniques
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Marticorena Sánchez, RaúlAutoridad UBU Orcid
    Arnaiz González, ÁlvarAutoridad UBU Orcid
    Escolar Llamazares, María del CaminoAutoridad UBU Orcid
    Queiruga Dios, Miguel ÁngelAutoridad UBU Orcid
    Publicado en
    European Journal of Investigation in Health, Psychology and Education. 2018, V. 8, n. 3, p. 129-142
    Editorial
    ASUNIVEP
    Fecha de publicación
    2018-12
    ISSN
    2174-8144
    DOI
    10.30552/ejihpe.v8i3.273
    Resumen
    La forma de enseñar y de aprender en la sociedad del siglo XXI ha cambiado. Actualmente, en un porcentaje alto la docencia se realiza en los Learning Management System. Estos sistemas permiten aplicar técnicas de Learning Analytics. La utilización de dichas herramientas, facilita, entre otros, conocer el patrón de aprendizaje de los estudiantes y la predicción de los alumnos en riesgo. El objetivo de este estudio fue conocer en orden jerárquico de importancia los patrones de aprendizaje más efectivos de los estudiantes en la plataforma. Se trabajó durante dos cursos académicos con una muestra de 122 estudiantes de Ciencias de la Salud. Los instrumentos utilizados fueron la plataforma Moodle v.3.1 y el análsis de los logs con técnicas de Machine Learning de regresión. Los resultados indican que el Modelo de Predicción Lineal Automático detectó en orden de importancia: las visitas medias por día, la realización por parte del estudiante de cuestionarios de autoevaluación, y la consulta al feedback del docente. El porcentaje de varianza explicada de estas variables sobre los resultados finales fue de un 50.8%. Asimismo, la efectividad del patrón conductual explicó 64.1% de la varianza de dichos resultados, hallándose tres clústeres de efectividad en el patrón conductual detectado.
     
    The way of teaching and learning in twenty-first century society continues to change. At present, a high percentage of teaching takes place through Learning Management Systems that apply Learning Analytics Techniques. The use of these tools, among other things, facilitates knowledge of student learning patterns and the detection of at-risk students. The aim of this study is to establish the most effective learning patterns of the students on the platform in a hierarchical order of importance. It was conducted over two academic years with 122 students of Health Sciences. The instruments used were the Moodle v.3.1 platform and the analysis of logs with Machine Learning regression techniques. The results indicated that the Automatic Linear Prediction Model detected by order of importance: average visits per day, student self-assessment questionnaires, and teacher feedback. The percentage variance of the final results explained by these variables was 50.8%. Likewise, the effectiveness of the behavioral pattern explained 64.1% of the variance in those results, finding three clusters of effectiveness in the behavioral patterns that were detected.
    Palabras clave
    Learning management system
    Learning analytics
    Modelo lineal automático
    Alumno en riesgo
    Universidad
    Automatic lineal model
    At-risk students
    University
    Materia
    Enseñanza superior
    Education, Higher
    Psicología
    Psychology
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/6261
    Versión del editor
    https://doi.org/10.30552/ejihpe.v8i3.273
    Aparece en las colecciones
    • Artículos GIEC
    • Artículos ADMIRABLE
    • Artículos DATAHES
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Saiz-ejihpe_2018.pdf
    Tamaño:
    649.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem